摘要:本文是2022年江西服裝學院高職單招《數(shù)學》考試大綱,單招數(shù)學科試卷的命題,將遵循“考查基礎知識的同時,注重考查能力”的原則,更多詳情請見下文。
一、考試性質(zhì)
江西服裝學院(高職教育)單招考試(以下簡稱單考)是合格的高中畢業(yè)生和具有同等學力的考生參加的選拔性考試。學校根據(jù)考生成績,按已確定的招生計劃,德、智、體等全面衡量,擇優(yōu)錄取。因此,單考應具有較高的信度、效度,必要的區(qū)分度和適當?shù)碾y度。
二、命題指導思想
江西服裝學院(高職教育)單招數(shù)學科試卷的命題,將遵循“考查基礎知識的同時,注重考查能力”的原則,確立以能力立意的命題指導思想,將知識、能力和素質(zhì)融為一體,全面檢測考生的數(shù)學素養(yǎng)和考生進入高等學校繼續(xù)學習的潛能,有利于高校人才的選拔和中學素質(zhì)教育的實施。
數(shù)學科考試要發(fā)揮數(shù)學作為主要基礎學科的作用,要考查考生數(shù)學的基礎知識、基本技能和數(shù)學思想方法,考查考生的數(shù)學基本能力應用意識和創(chuàng)新意識,考查考生對數(shù)學本質(zhì)的理解,體現(xiàn)《課程標準》中對知識與技能、過程與方法、情感態(tài)度與價值觀等目標的要求。
試卷保持相對穩(wěn)定,適度創(chuàng)新,既體現(xiàn)新課程理念,又繼承和發(fā)揚歷年高考數(shù)學命題的成果和經(jīng)驗,逐步形成“立意鮮明,背景新穎,設問靈活,層次清晰”的特色。
三、考核目標與要求
(一)知識要求
知識是指《課程標準》所規(guī)定的必修課程、選修課程系列1和系列4中的數(shù)學概念、性質(zhì)、法則、公式、公理、定理以及由其內(nèi)容反映的數(shù)學思想方法,還包括按照一定程序與步驟進行運算,處理數(shù)據(jù)、繪制圖表等基本技能。
各部分知識的整體要求及其定位參照《課程標準》相應模塊的有關說明。對知識的要求依次是了解、理解、掌握三個層次。
1.了解:要求對所列知識的含義有初步的、感性的認識,知道這一知識內(nèi)容是什么,按照一定的程序和步驟照樣模仿,并能(或會)在有關的問題中識別和認識它。
這一層次所涉及的主要行為動詞有:了解,知道、識別,模仿,會求、會解等。
2.理解:要求對所列知識內(nèi)容有較深刻的理性認識,知道知識間的邏輯關系,能夠?qū)λ兄R作正確的描述說明并用數(shù)學語言表達,能夠利用所學的知識內(nèi)容對有關問題作比較、判別、討論,具備利用所學知識解決簡單問題的能力。
這一層次所涉及的主要行為動詞有:描述,說明,表達、表示,推測、想象,比較、判別、判斷,初步應用等。
3.掌握:要求能夠?qū)λ械闹R內(nèi)容能夠推導證明,利用所學知識對問題能夠進行分析、研究、討論,并且加以解決。
這一層次所涉及的主要行為動詞有:掌握、導出、分析,推導、證明,研究、討論、運用、解決問題等。
(二)能力要求
能力是指空間想像能力、抽象概括能力、推理論證能力、運算求解能力、數(shù)據(jù)處理能力以及應用意識和創(chuàng)新意識。
1.空間想像能力:能根據(jù)條件作出正確的圖形,根據(jù)圖形想象出直觀形象;能正確地分析出圖形中基本元素及其相互關系;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地揭示問題的本質(zhì)。
空間想象能力是對空間形式的觀察、分析、抽象的能力,主要表現(xiàn)為識圖、畫圖和對圖形的想象能力。 識圖是指觀察研究所給圖形中幾何元素之間的相互關系;畫圖是指將文字語言和符合語言轉化為圖形語言以及對圖形添加輔助圖形或圖形進行各種變換;對圖形的想象主要包括有圖想圖和無圖想圖兩種,是空間想象能力高層次的標志。
2.抽象概括能力:抽象是指舍棄事物非本質(zhì)的屬性,揭示其本質(zhì)的屬性;概括是指把僅僅屬于某一類對象的共同屬性區(qū)分出來的思維過程。抽象和概括是相互聯(lián)系的,沒有抽象就不可能有概括,而概括必須在抽象的基礎上得出某種觀點或某個結論。
抽象概括能力是對具體的、生動的實例,在抽象概括的過程中,發(fā)現(xiàn)研究對象的本質(zhì);從給定的大量信息材料中,概括出一些結論,并能應用于解決問題或作出新的判斷。
3.推理論證能力:推理是思維的基本形式之一,它由前提和結論兩部分組成;論證是由已有的正確的前提到被論證的結論的一連串的推理過程.推理包括合情推理和演繹推理,論證方法既包括按形式劃分的演繹法和歸納法,也包括按思考方法劃分的直接證法和間接證法.一般運用合情推理進行猜想,再運用演繹推理進行證明。
中學數(shù)學的推理論證能力是根據(jù)已知的事實和已獲得的正確數(shù)學命題,論證某一數(shù)學命題真實性的初步的推理能力。
4.運算求解能力:會根據(jù)法則、公式進行正確運算、變形和數(shù)據(jù)處理,能根據(jù)問題的條件尋找與設計合理、簡捷的運算途徑;能根據(jù)要求對數(shù)據(jù)進行估計和近似計算。
運算求解能力是思維能力和運算技能的結合。 運算包括對數(shù)字的計算、估值和近似計算,對式子的組合變形與分解變形,對幾何圖形各幾何量的計算求解等。運算能力包括分析運算條件、探究運算方向、選擇運算公式、確定運算程序等一系列過程中的思維能力,也包括在實施運算過程中遇到障礙而調(diào)整運算的能力。
5.數(shù)據(jù)處理能力:會收集、整理、分析數(shù)據(jù),能從大量數(shù)據(jù)中抽取對研究問題有用的信息,并作出判斷。
數(shù)據(jù)處理能力主要依據(jù)統(tǒng)計或統(tǒng)計案例中的方法對數(shù)據(jù)進行整理、分析,并解決給定的實際問題。
6.應用意識:能綜合應用所學數(shù)學知識、思想和方法解決問題,包括解決在相關學科、生產(chǎn)、生活中簡單的數(shù)學問題;能理解對問題陳述的材料,并對所提供的信息資料進行歸納、整理和分類,將實際問題抽象為數(shù)學問題,建立數(shù)學模型;應用相關的數(shù)學方法解決問題并加以驗證,并能用數(shù)學語言正確地表達和說明。應用的主要過程是依據(jù)現(xiàn)實的生活背景,提煉相關的數(shù)量關系,將現(xiàn)實問題轉化為數(shù)學問題,構造數(shù)學模型,并加以解決。
7.創(chuàng)新意識:能發(fā)現(xiàn)問題、提出問題,綜合與靈活地應用所學的數(shù)學知識、思想方法,選擇有效的方法和手段分析信息,進行獨立的思考、探索和研究,提出解決問題的思路,創(chuàng)造性地解決問題。
創(chuàng)新意識是理性思維的高層次表現(xiàn)。對數(shù)學問題的“觀察、猜測、抽象、概括、證明”,是發(fā)現(xiàn)問題和解決問題的重要途徑,對數(shù)學知識的遷移、組合、融會的程度越高,顯示出的創(chuàng)新意識也就越強。
(三)個性品質(zhì)要求
個性品質(zhì)是指考生個體的情感、態(tài)度和價值觀。要求考生具有一定的數(shù)學視野,認識數(shù)學的科學價值和人文價值,崇尚數(shù)學的理性精神,形成審慎的思維習慣,體會數(shù)學的美學意義。
要求考生克服緊張情緒,以平和的心態(tài)參加考試,合理支配考試時間,以實事求是的科學態(tài)度解答試題,樹立戰(zhàn)勝困難的信心,體現(xiàn)鍥而不舍的精神。
(四)考查要求
數(shù)學學科的系統(tǒng)性和嚴密性決定了數(shù)學知識之間深刻的內(nèi)在聯(lián)系,包括各部分知識的縱向聯(lián)系和橫向聯(lián)系,要善于從本質(zhì)上抓住這些聯(lián)系,進而通過分類、梳理、綜合,構建數(shù)學試卷的框架結構。
1.對數(shù)學基礎知識的考查,既要全面又要突出重點,對于支撐學科知識體系的重點內(nèi)容,要占有較大的比例,構成數(shù)學試卷的主體,注重學科的內(nèi)在聯(lián)系和知識的綜合性,不刻意追求知識的覆蓋面。從學科的整體高度和思維價值的高度考慮問題,在知識網(wǎng)絡交匯點設計試題,使對數(shù)學基礎知識的考查達到必要的深度。
2.對數(shù)學思想方法的考查對數(shù)學知識在更高層次上的抽象和概括的考查,考查時必須要與數(shù)學知識相結合,通過對數(shù)學知識的考查,反映考生對數(shù)學思想方法的掌握程度。
3.對數(shù)學能力的考查,強調(diào)“以能力立意”,就是以數(shù)學知識為載體,從問題入手,把握學科的整體意義,用統(tǒng)一的數(shù)學觀點組織材料。側重體現(xiàn)對知識的理解和應用,尤其是綜合和靈活的應用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度以及進一步學習的潛能。
對能力的考查要全面,強調(diào)綜合性、應用性,并要切合考生實際。對推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點,強調(diào)其科學性、嚴謹性、抽象性;對空間想象能力的考查主要體現(xiàn)在對文字語言、符號語言及圖形語言的互相轉化上;對運算求解能力的考查主要是對算法和推理的考查,考查以代數(shù)運算為主;對數(shù)據(jù)處理能力的考查主要是考查運用概率統(tǒng)計的基本方法和思想解決實際問題的能力。
4.對應用意識的考查主要采用解決應用問題的形式。命題時要堅持“貼近生活,背景公平,控制難度”的原則,試題設計要切合中學數(shù)學教學的實際和考生的年齡特點,并結合實踐經(jīng)驗,使數(shù)學應用問題的難度符合考生的水平。
5.對創(chuàng)新意識的考查時對高層次理性思維的考查.在考試中創(chuàng)設新穎的問題情境,構造有一定深度和廣度的數(shù)學問題時,要注重問題的多樣化,體現(xiàn)思維的發(fā)散性;精心設計考查數(shù)學主體內(nèi)容、體現(xiàn)數(shù)學素質(zhì)的試題;也要有反映數(shù)、形運動變化的試題以及研究型、探索型、開放型等類型的試題。
數(shù)學科的命題,在考查基礎知識的基礎上,注重對數(shù)學思維方法的考查,注重對數(shù)學能力的考查,展現(xiàn)數(shù)學的科學價值和人文價值,同時兼顧試題的基礎性、綜合性和現(xiàn)實性,重視試題間的層次性,合理調(diào)控綜合程度,堅持多角度、多層次的考查,努力實現(xiàn)全面考查綜合數(shù)學素養(yǎng)的要求。
四、考試形式與試卷結構
(一)考試形式
考試采用閉卷、筆試形式。考試時間為60分鐘。考試不允許使用計算器。
(二)考試范圍
數(shù)學1(必修):集合、函數(shù)概念與基本初步等函數(shù)Ⅰ(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù))。
數(shù)學2(必修):立體幾何初步、平面解析幾何初步。
數(shù)學3(必修):統(tǒng)計、概率。
數(shù)學4(必修):基本初等函數(shù)Ⅱ(三角函數(shù))、平面向量、三角恒等變換。
數(shù)學5(必修):解三角形、數(shù)列、不等式。
選修1—1:常用邏輯用語、圓錐曲線與方程。
選修1—2:復數(shù)的引入、框圖。
選修4—5:不等式選講。
(三)試卷結構
1.試題類型
全卷滿分為100分,試卷結構如下:
2.難度控制
試題按其難度分為容易題、中等難度題和難題.難度在0.7以上的試題為容易題,難度為0.4—0.7的試題是中等難度題,難度在0.4以下的試題為難題。三種難度的試題應控制合適的分值比例,全卷難度控制適中。
五、具體考試內(nèi)容及其要求
(一)必考內(nèi)容與要求
1.集合
(1)集合的含義與表示
① 了解集合的含義、元素與集合的屬于關系。
② 能用自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題。
(2)集合間的基本關系
① 理解集合之間包含與相等的含義,能識別給定集合的子集。
② 在具體情境中,了解全集與空集的含義。
(3)集合的基本運算
① 理解兩個集合的并集與交集的含義,會求兩個簡單集合的并集與交集。
② 理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
③ 能使用韋恩(Venn)圖表達集合間的基本關系及集合的基本運算。
2.函數(shù)概念與基本初等函數(shù)Ⅰ
(1)函數(shù)
① 了解構成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
② 在實際情境中,會根據(jù)不同的需要選擇恰當?shù)姆椒?如圖像法、列表法、解析法)表示函數(shù)。
③ 了解簡單的分段函數(shù),并能簡單應用。
④ 理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結合具體函數(shù),了解函數(shù)奇偶性的含義。
⑤ 會運用基本初等函數(shù)的圖像分析函數(shù)的性質(zhì)。
(2)指數(shù)函數(shù)
① 了解指數(shù)函數(shù)模型的實際背景。
② 理解有理指數(shù)冪的含義,了解實數(shù)指數(shù)冪的意義,掌握冪的運算。
③ 理解指數(shù)函數(shù)的概念及其單調(diào)性,掌握指數(shù)函數(shù)圖像通過的特殊點。
④ 知道指數(shù)函數(shù)是一類重要的函數(shù)模型。
(3)對數(shù)函數(shù)
① 理解對數(shù)的概念及其運算性質(zhì),知道用換底公式能將一般對數(shù)轉化成自然對數(shù)或常用對數(shù);了解對數(shù)在簡化運算中的作用。
② 理解對數(shù)函數(shù)的概念及其單調(diào)性,掌握對數(shù)函數(shù)圖像通過的特殊點。
③ 體會對數(shù)函數(shù)是一類重要的函數(shù)模型。
④ 了解指數(shù)函數(shù)與對數(shù)函數(shù)(a>0,且a≠1)互為反函數(shù)。
(4)冪函數(shù)
① 了解冪函數(shù)的概念。
② 結合函數(shù)圖像,了解它們的變化情況。
(5)函數(shù)與方程
① 結合二次函數(shù)的圖像,了解函數(shù)的零點與方程根的聯(lián)系,判斷一元二次方程根的存在性及根的個數(shù)。
②根據(jù)具體函數(shù)的圖像,能夠用二分法求相應方程的近似解。
(6)函數(shù)模型及其應用
① 了解指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的增長特征,結合具體實例體會直線上升、指數(shù)增長、對數(shù)增長等不同函數(shù)類型增長的含義。
② 了解函數(shù)模型(如指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會生活中普遍使用的函數(shù)模型)的廣泛應用。
3.立體幾何初步
(1)空間幾何體
① 認識柱、錐、臺、球及其簡單組合體的結構特征,并能運用這些特征描述現(xiàn)實生活中簡單物體的結構。
② 能畫出簡單空間圖形(長方體、球、圓柱、圓錐、棱柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會用斜二側法畫出它們的直觀圖。
③ 會用平行投影與中心投影兩種方法,畫出簡單空間圖形的三視圖與直觀圖,了解空間圖形的不同表示形式。
④了解球、棱柱、棱錐、臺的表面積和體積的計算公式(不要求記憶公式)。
(2)點、直線、平面之間的位置關系
① 理解空間直線、平面位置關系的定義,并了解如下可以作為推理依據(jù)的公理和定理。
◆公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點在此平面內(nèi)。
◆公理2:過不在同一條直線上的三點,有且只有一個平面。
◆公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。
◆公理4:平行于同一條直線的兩條直線互相平行。
◆定理:空間中如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補。
② 以立體幾何的上述定義、公理和定理為出發(fā)點,認識和理解空間中線面平行、垂直的有關性質(zhì)與判定定理。
理解以下判定定理。
◆如果平面外一條直線與此平面內(nèi)的一條直線平行,那么該直線與此平面平行。
◆如果一個平面內(nèi)的兩條相交直線與另一個平面都平行,那么這兩個平面平行。
◆如果一條直線與一個平面內(nèi)的兩條相交直線都垂直,那么該直線與此平面垂直。
◆如果一個平面經(jīng)過另一個平面的垂線,那么這兩個平面互相垂直。
理解以下性質(zhì)定理,并能夠證明。
◆如果一條直線與一個平面平行,經(jīng)過該直線的任一個平面與此平面的交線和該直線平行。
◆如果兩個平行平面同時和第三個平面相交,那么它們的交線相互平行。
◆垂直于同一個平面的兩條直線平行。
◆如果兩個平面垂直,那么一個平面內(nèi)垂直于它們交線的直線與另一個平面垂直。
③ 能運用公理、定理和已獲得的結論證明一些空間圖形的位置關系的簡單命題。
4.平面解析幾何初步
(1)直線與直線方程
① 在平面直角坐標系中,結合具體圖形,確定直線位置的幾何要素。
② 理解直線的傾斜角和斜率的概念,掌握過兩點的直線斜率的計算公式。
③ 能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直。
④ 掌握確定直線位置的幾何要素,掌握直線方程的幾種形式(點斜式、兩點式及一般式),了解斜截式與一次函數(shù)的關系。
⑤ 能用解方程組的方法求兩直線的交點坐標。
⑥ 掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
(2)圓與方程
① 掌握確定圓的幾何要素,掌握圓的標準方程與一般方程。
② 能根據(jù)給定直線、圓的方程,判斷直線與圓的位置關系;能根據(jù)給定兩個圓的方程,判斷兩圓的位置關系。
③ 能用直線和圓的方程解決一些簡單的問題。
④ 初步了解用代數(shù)方法處理幾何問題的思想。
(3)空間直角坐標系
① 了解空間直角坐標系,會用空間直角坐標表示點的位置。
② 會推導空間兩點間的距離公式。
5.統(tǒng)計
(1)隨機抽樣
① 理解隨機抽樣的必要性和重要性。
② 會用簡單隨機抽樣方法從總體中抽取樣本;了解分層抽樣和系統(tǒng)抽樣方法。
(2)用樣本估計總體
① 了解分布的意義和作用,會列頻率分布表,會畫頻率分布直方圖、頻率折線圖,理解它們各自的特點。
② 理解樣本數(shù)據(jù)標準差的意義和作用,會計算數(shù)據(jù)標準差(不要求記憶公式)。
③ 能從樣本數(shù)據(jù)中提取基本的數(shù)字特征(如平均數(shù)、標準差),并給出合理的解釋。
④ 會用樣本的頻率分布估計總體分布,會用樣本的基本數(shù)字特征估計總體的基本數(shù)字特征,理解用樣本估計總體的思想。
⑤ 會用隨機抽樣的基本方法和樣本估計總體的思想,解決一些簡單的實際問題。
6.概率
(1)事件與概率
① 了解隨機事件發(fā)生的不確定性和頻率的穩(wěn)定性,了解概率的意義,了解頻率與概率的區(qū)別。
② 了解兩個互斥事件的概率加法公式。
(2)古典概型
① 理解古典概型及其概率計算公式。
② 會計算一些隨機事件所含的基本事件數(shù)及事件發(fā)生的概率。
7.基本初等函數(shù)Ⅱ(三角函數(shù))
(1)任意角的概念、弧度制
① 了解任意角的概念。
② 了解弧度制概念,能進行弧度與角度的互化。
(2)三角函數(shù)
① 理解任意角三角函數(shù)(正弦、余弦、正切)的定義。
② 能利用單位圓中的三角函數(shù)線推導出正弦、余弦、正切的誘導公式,能畫出相關圖像,了解三角函數(shù)的周期性。
③ 理解正弦函數(shù)、余弦函數(shù)在區(qū)間[0,2π]的性質(zhì)(如單調(diào)性、最大和最小值以及與軸交點等)。理解正切函數(shù)單調(diào)性。
④ 理解同角三角函數(shù)的基本關系式。
⑤ 會用三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,會用三角函數(shù)解決一些簡單實際問題。
8.平面向量
(1)平面向量的實際背景及基本概念
①了解向量的實際背景。
②理解平面向量的概念,理解兩個向量相等的含義。
③理解向量的幾何表示。
(2)向量的線性運算
① 掌握向量加法、減法的運算,并理解其幾何意義。
② 掌握向量數(shù)乘的運算及其意義,理解兩個向量共線的含義。
③ 了解向量線性運算的性質(zhì)及其幾何意義。
(3)平面向量的基本定理及坐標表示
① 了解平面向量的基本定理及其意義。
② 掌握平面向量的正交分解及其坐標表示。
③ 會用坐標表示平面向量的加法、減法與數(shù)乘運算。
④ 理解用坐標表示的平面向量共線的條件。
(4)平面向量的數(shù)量積
① 理解平面向量數(shù)量積的含義及其物理意義。
② 了解平面向量的數(shù)量積與向量投影的關系。
③ 掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算。
④ 能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積判斷兩個平面向量的垂直關系。
(5)向量的應用
①會用向量方法解決某些簡單的平面幾何問題。
②會用向量方法解決簡單的力學問題與其他一些實際問題。
9.三角恒等變換
(1)兩角和與差的三角函數(shù)公式
① 會用向量的數(shù)量積推導出兩角差的余弦公式。
② 會用兩角差的余弦公式導出兩角差的正弦、正切公式。
③ 會用兩角差的余弦公式導出兩角和的正弦、余弦、正切公式,導出二倍角的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系。
(2)簡單的三角恒等變換
能運用上述公式進行簡單的恒等變換(包括導出積化和差、和差化積、半角公式,但對這三組公式不要求記憶)。
10.解三角形
(1)正弦定理和余弦定理
掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。
(2)應用
能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題。
11.數(shù)列
(1)數(shù)列的概念和簡單表示法
①了解數(shù)列的概念和幾種簡單的表示方法(列表、圖像、通項公式)。
②了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。
(2)等差數(shù)列、等比數(shù)列
① 理解等差數(shù)列、等比數(shù)列的概念。
② 掌握等差數(shù)列、等比數(shù)列的通項公式與前n項和公式。
③ 能在具體的問題情境中,識別數(shù)列的等差關系或等比關系,并能用有關知識解決相應的問題。
④ 了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關系。
12.不等式
(1)不等關系
了解現(xiàn)實世界和日常生活中的不等關系,了解不等式(組)的實際背景。
(2)一元二次不等式
① 會從實際情境中抽象出一元二次不等式模型。
② 通過函數(shù)圖像了解一元二次不等式與相應的二次函數(shù)、一元二次方程的聯(lián)系。
③ 會解一元二次不等式,對給定的一元二次不等式,會設計求解的程序框圖。
(3)二元一次不等式組與簡單線性規(guī)劃問題
① 會從實際情境中抽象出二元一次不等式組。
② 了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組。
③ 會從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決。
(4)基本不等式:
① 了解基本不等式的證明過程。
② 會用基本不等式解決簡單的最大(小)值問題。
13.常用邏輯用語
① 理解命題的概念。
②了解“若p,則q”形式的命題的逆命題、否命題與逆否命題,會分析四種命題的相互關系。
③ 理解必要條件、充分條件與充要條件的意義。
④了解邏輯聯(lián)結詞“或”、“且”、“非”的含義。
⑤ 理解全稱量詞與存在量詞的意義。
⑥ 能正確地對含有一個量詞的命題進行否定。
14.圓錐曲線與方程
① 了解圓錐曲線的實際背景,了解圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用。
② 掌握橢圓的定義、幾何圖形、標準方程和簡單幾何性質(zhì)。
③ 了解雙曲線的定義、拋物線、幾何圖形和標準方程,知道其簡單的幾何性質(zhì)。
④ 理解數(shù)形結合的思想。
⑤ 了解圓錐曲線的簡單應用。
15.復數(shù)的引入
①理解復數(shù)的基本概念,理解復數(shù)相等的充要條件。
②了解復數(shù)的代數(shù)表示法及其幾何意義。
③ 會進行復數(shù)代數(shù)形式的四則運算,了解復數(shù)代數(shù)形式的加、減運算的幾何意義。
16.框圖
① 了解程序框圖。
② 了解工序流程圖(即統(tǒng)籌圖)。
③ 能繪制簡單實際問題的流程圖,了解流程圖在解決實際問題中的作用。
④了解結構圖。
⑤會運用結構圖梳理已學過的知識、整理收集到的資料信息。
17.不等式選講
① 理解絕對值的幾何意義,并了解下列不等式成立的幾何意義及取等號的條件:
|a+b|≤|a|+|b| (a,b∈R);
|a-b|≤|a-c|+|c-b|(a,b∈R)。
②會利用絕對值的幾何意義求解以下類型的不等式:
|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c。
③ 通過一些簡單問題了解證明不等式的基本方法:比較法、綜合法、分析法、放縮法。